Neural radiance fields enable state-of-the-art photorealistic view synthesis. However, existing radiance field representations are either too compute-intensive for real-time rendering or require too much memory to scale to large scenes. We present a Memory-Efficient Radiance Field (MERF) representation that achieves real-time rendering of large-scale scenes in a browser. MERF reduces the memory consumption of prior sparse volumetric radiance fields using a combination of a sparse feature grid and high-resolution 2D feature planes. To support large-scale unbounded scenes, we introduce a novel contraction function that maps scene coordinates into a bounded volume while still allowing for efficient ray-box intersection. We design a lossless procedure for baking the parameterization used during training into a model that achieves real-time rendering while still preserving the photorealistic view synthesis quality of a volumetric radiance field.
翻译:神经光亮场使得能够进行最先进的光学现实观合成。 但是, 现有的光亮场面显示要么过于计算密集, 无法实时进行实时转换, 要么需要太多的内存, 无法向大场景扩展。 我们展示了一个内存- 节能辐射场( MERF), 可以在浏览器中实时显示大型场景。 MERF 使用一个稀有的地貌网格和高分辨率 2D 特征平面组合来减少先前稀薄的体积光场的内存消耗。 为了支持大型无界场景, 我们引入了一种新的收缩功能, 将场景坐标映入一个捆绑的体积, 同时仍然允许有效的光箱交叉点。 我们设计了一个无损程序, 将培训中使用的参数化制成一个模型, 在保持体积光场的光现实观合成质量的同时, 实现实时生成一个模型 。