We consider the problem of reconstructing a full 360{\deg} photographic model of an object from a single image of it. We do so by fitting a neural radiance field to the image, but find this problem to be severely ill-posed. We thus take an off-the-self conditional image generator based on diffusion and engineer a prompt that encourages it to "dream up" novel views of the object. Using an approach inspired by DreamFields and DreamFusion, we fuse the given input view, the conditional prior, and other regularizers in a final, consistent reconstruction. We demonstrate state-of-the-art reconstruction results on benchmark images when compared to prior methods for monocular 3D reconstruction of objects. Qualitatively, our reconstructions provide a faithful match of the input view and a plausible extrapolation of its appearance and 3D shape, including to the side of the object not visible in the image.
翻译:我们考虑从一个物体的单一图像中重建一个完整的360 {deg} 摄影模型的问题。 我们这样做的方法是在图像上安装一个神经光亮场,但发现这个问题严重不妥。 我们因此在扩散的基础上采用了一个不附带条件的图像生成器, 并设计出一个鼓励它“ 梦想字段和梦想幻觉” 对该物体“ 梦想字段和梦想幻象” 的新观点的快速的感应器。 我们使用一种由梦想字段和梦想幻象启发的方法, 将给定的投入视图、 有条件的先导器和其他正规化器结合到最终的、 一致的重建中。 我们用基准图像展示了最先进的重建结果, 与先前单立体 3D 重建物体的方法相比。 质量上, 我们的重建提供了一种忠实的输入视图和外推法理的外推法理, 包括图像中无法看到的对象的侧面。