The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most successful methods for solving black-box continuous optimization problems. One practically useful aspect of the CMA-ES is that it can be used without hyperparameter tuning. However, the hyperparameter settings still have a considerable impact, especially for difficult tasks such as solving multimodal or noisy problems. In this study, we investigate whether the CMA-ES with default population size can solve multimodal and noisy problems. To perform this investigation, we develop a novel learning rate adaptation mechanism for the CMA-ES, such that the learning rate is adapted so as to maintain a constant signal-to-noise ratio. We investigate the behavior of the CMA-ES with the proposed learning rate adaptation mechanism through numerical experiments, and compare the results with those obtained for the CMA-ES with a fixed learning rate. The results demonstrate that, when the proposed learning rate adaptation is used, the CMA-ES with default population size works well on multimodal and/or noisy problems, without the need for extremely expensive learning rate tuning.
翻译:协方差矩阵适应进化策略 (CMA-ES) 是解决黑盒连续优化问题最成功的方法之一。 CMA-ES 最实用的一点是它可以在不需要超参数调整的情况下使用。但是,超参数设置仍然有相当大的影响,特别是对于解决多模态或噪声问题等困难任务。在本研究中,我们研究了 CMA-ES 是否能够解决多模态和噪声问题。为了进行这项研究,我们开发了新的学习率自适应机制,使学习率被调整为保持恒定的信噪比。我们通过数值实验研究了带有所提出的学习率自适应机制的 CMA-ES 的行为,并将结果与固定学习率的 CMA-ES 的结果进行了比较。结果表明,当使用所提出的学习率自适应机制时,使用默认种群大小的 CMA-ES 可以很好地解决多模态和/或噪声问题,而无需进行极其昂贵的学习率调整。