We present a novel approach to path planning for robotic manipulators, in which paths are produced via iterative optimisation in the latent space of a generative model of robot poses. Constraints are incorporated through the use of constraint satisfaction classifiers operating on the same space. Optimisation leverages gradients through our learned models that provide a simple way to combine goal reaching objectives with constraint satisfaction, even in the presence of otherwise non-differentiable constraints. Our models are trained in a task-agnostic manner on randomly sampled robot poses. In baseline comparisons against a number of widely used planners, we achieve commensurate performance in terms of task success, planning time and path length, performing successful path planning with obstacle avoidance on a real 7-DoF robot arm.
翻译:我们提出了一种新颖的方法来规划机器人操纵者的道路,在机器人的基因模型的潜质空间里,通过迭代优化来创造路径;通过使用在同一空间运行的制约性满意度分类器,将制约因素纳入其中;优化利用我们所学的模型来利用梯度,这些模型提供了一种简单的方式,将实现目标的一体化和制约性满意度结合起来,即使存在其他无法区分的限制;我们的模型在随机抽样机器人的构成方面接受了任务不可知性的培训;在与一些广泛使用的规划者进行基线比较时,我们在任务成功、规划时间和路径长度方面实现了相应的业绩,在避免真正的7-DoF机器人臂障碍的情况下,成功地规划了道路。