Complex, multi-objective missions require the coordination of heterogeneous robots at multiple inter-connected levels, such as coalition formation, scheduling, and motion planning. This challenge is exacerbated by dynamic changes, such as sensor and actuator failures, communication loss, and unexpected delays. We introduce Dynamic Iterative Task Allocation Graph Search (D-ITAGS) to \textit{simultaneously} address coalition formation, scheduling, and motion planning in dynamic settings involving heterogeneous teams. D-ITAGS achieves resilience via two key characteristics: i) interleaved execution, and ii) targeted repair. \textit{Interleaved execution} enables an effective search for solutions at each layer while avoiding incompatibility with other layers. \textit{Targeted repair} identifies and repairs parts of the existing solution impacted by a given disruption, while conserving the rest. In addition to algorithmic contributions, we provide theoretical insights into the inherent trade-off between time and resource optimality in these settings and derive meaningful bounds on schedule suboptimality. Our experiments reveal that i) D-ITAGS is significantly faster than recomputation from scratch in dynamic settings, with little to no loss in solution quality, and ii) the theoretical suboptimality bounds consistently hold in practice.
翻译:复杂、多目标的任务要求不同机器人在多个相互关联的层次上进行协调,例如联盟的形成、时间安排和运动规划。这一挑战因动态变化而加剧,例如传感器和动动动器故障、通信丢失和意外延误。我们引入动态循环任务分配图搜索(D-ITAGS)到\textit{smulatelygraphearch(D-ITAGS)到\ textitle{tleft auction}到有不同团队参与的动态环境中处理联盟的形成、时间安排和运动规划。D-ITAGS通过两个关键特征实现弹性:一) 相互脱节执行和二) 目标修复。\textit{Interleftected 执行} 使得在每一层都能够有效寻找解决方案,同时避免与其他层不兼容。\textit{Talgeed 修补} 我们在保存其余部分的同时,发现并修复现有解决方案中受特定干扰影响的部分。除了算法贡献外,我们还从理论上洞察到这些环境中的时间和资源最佳性之间的内在权衡,并在时间表的亚优化性上得出有意义的界限。我们的实验显示,DITAGSiisiiisiII在动态环境中没有多少损失。