Existing methods for isolating hard subpopulations and spurious correlations in datasets often require human intervention. This can make these methods labor-intensive and dataset-specific. To address these shortcomings, we present a scalable method for automatically distilling a model's failure modes. Specifically, we harness linear classifiers to identify consistent error patterns, and, in turn, induce a natural representation of these failure modes as directions within the feature space. We demonstrate that this framework allows us to discover and automatically caption challenging subpopulations within the training dataset. Moreover, by combining our framework with off-the-shelf diffusion models, we can generate images that are especially challenging for the analyzed model, and thus can be used to perform synthetic data augmentation that helps remedy the model's failure modes. Code available at https://github.com/MadryLab/failure-directions
翻译:孤立硬亚集群和数据集中虚假关联的现有方法往往需要人工干预。 这可以使这些方法具有劳动密集型和数据集的特殊性。 为了解决这些缺陷, 我们提出了一个自动蒸馏模型失败模式的可缩放方法。 具体地说, 我们利用线性分类器来识别一致的错误模式, 从而自然地将这些失败模式描述为特性空间内的方向。 我们证明这个框架允许我们在培训数据集中发现和自动说明挑战亚群群。 此外, 通过将我们的框架与现成的推广模型结合起来, 我们可以生成对分析模型特别具有挑战性的图像, 从而可以用来进行合成数据增强, 帮助补救模型失败模式。 代码可在 https://github.com/MadryLab/failure-decturation查阅 https://github. com/MadryLab/failure-droute