Current 3D segmentation methods heavily rely on large-scale point-cloud datasets, which are notoriously laborious to annotate. Few attempts have been made to circumvent the need for dense per-point annotations. In this work, we look at weakly-supervised 3D semantic instance segmentation. The key idea is to leverage 3D bounding box labels which are easier and faster to annotate. Indeed, we show that it is possible to train dense segmentation models using only bounding box labels. At the core of our method, \name{}, lies a deep model, inspired by classical Hough voting, that directly votes for bounding box parameters, and a clustering method specifically tailored to bounding box votes. This goes beyond commonly used center votes, which would not fully exploit the bounding box annotations. On ScanNet test, our weakly supervised model attains leading performance among other weakly supervised approaches (+18 mAP@50). Remarkably, it also achieves 97% of the mAP@50 score of current fully supervised models. To further illustrate the practicality of our work, we train Box2Mask on the recently released ARKitScenes dataset which is annotated with 3D bounding boxes only, and show, for the first time, compelling 3D instance segmentation masks.


翻译:目前的 3D 分解方法严重依赖大型的 点球分解数据集, 这在注释上非常困难。 很少有人试图绕过对密集的每点注解的需要。 在这项工作中, 我们查看的是低监管的 3D 语义区分解法。 关键的想法是利用3D 绑定框标签, 这些标签更容易和更快到注释上。 事实上, 我们显示, 仅使用捆绑框标签来训练密度密度的分解模型是可能的。 在我们的方法的核心, name ⁇ 是一个深层次的模型, 受经典的Hough投票启发, 直接投票决定捆绑框参数, 以及专门为捆绑框票设计的组合方法。 这超出了常用的中央票, 无法充分利用捆绑框说明。 在扫描网测试中, 我们薄弱的受监管模型在其它薄弱的监管方法( +18 mAP@50) 中取得了领先的性。 值得注意的是, 在当前完全监管模型的 mAP@50 分中, 也只有97% 的 mAP@50 分, 是一个深层次的模型。 为了进一步说明我们工作的实用性,, 我们训练了框框框框3MSK 展示了最近释放的框 3D 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员