Pretrained transformers achieve remarkable performance when the test data follows the same distribution as the training data. However, in real-world NLU tasks, the model often faces out-of-distribution (OoD) instances. Such instances can cause the severe semantic shift problem to inference, hence they are supposed to be identified and rejected by the model. In this paper, we study the OoD detection problem for pretrained transformers using only in-distribution data in training. We observe that such instances can be found using the Mahalanobis distance in the penultimate layer. We further propose a contrastive loss that improves the compactness of representations, such that OoD instances can be better differentiated from in-distribution ones. Experiments on the GLUE benchmark demonstrate the effectiveness of the proposed methods.


翻译:未经培训的变压器在测试数据采用与培训数据相同的分布时取得显著的性能。然而,在实际的NLU任务中,模型常常面临分配外(OoD)情况。这类情况可能导致严重的语义转换问题被推论,因此应该被模型识别和拒绝。在本文中,我们只使用培训中的分配数据来研究未受过培训的变压器的OOD检测问题。我们观察到,在倒数第二层的Mahalanobis距离中可以发现这种情况。我们进一步提议了一种对比性损失,可以改善表述的紧凑性,从而使OOD情况与分配中的变压器相比可以有更好的区别。GLUE基准实验显示了拟议方法的有效性。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Mean-Shifted Contrastive Loss for Anomaly Detection
Arxiv
0+阅读 · 2021年6月7日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
Arxiv
6+阅读 · 2019年3月19日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员