Deep anomaly detection methods learn representations that separate between normal and anomalous samples. Very effective representations are obtained when powerful externally trained feature extractors (e.g. ResNets pre-trained on ImageNet) are fine-tuned on the training data which consists of normal samples and no anomalies. However, this is a difficult task that can suffer from catastrophic collapse, i.e. it is prone to learning trivial and non-specific features. In this paper, we propose a new loss function which can overcome failure modes of both center-loss and contrastive-loss methods. Furthermore, we combine it with a confidence-invariant angular center loss, which replaces the Euclidean distance used in previous work, that was sensitive to prediction confidence. Our improvements yield a new anomaly detection approach, based on $\textit{Mean-Shifted Contrastive Loss}$, which is both more accurate and less sensitive to catastrophic collapse than previous methods. Our method achieves state-of-the-art anomaly detection performance on multiple benchmarks including $97.5\%$ ROC-AUC on the CIFAR-10 dataset.


翻译:深度异常检测方法可以区分正常和异常的样本。非常有效的表述方法是当强大的外部训练地物提取器(如ResNets在图像网络上预先培训过的RESNets)对由正常样本和无异常组成的培训数据进行微调时获得的。然而,这是一项困难的任务,可能会遭受灾难性的崩溃,即容易学习到微不足道和非特定的特点。在本文中,我们提议一种新的损失功能,可以克服中损失和反差损失方法的失败模式。此外,我们把它与信任性差异性的角形中心损失结合起来,取代了先前工作中使用的欧克莱德距离,对预测信心十分敏感。我们的改进产生了一种新的异常检测方法,以美元为基础,即对灾难性崩溃比以往方法更加准确,对灾难性崩溃的敏感。我们的方法在多个基准上取得了最先进的异常检测性表现,包括CIFAR-10数据集中的975 $ ROC-AUC。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
88+阅读 · 2021年6月29日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
已删除
将门创投
3+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Learning Memory-guided Normality for Anomaly Detection
Arxiv
4+阅读 · 2019年5月1日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
已删除
将门创投
3+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员