When engaging in argumentative discourse, skilled human debaters tailor claims to the beliefs of the audience, to construct effective arguments. Recently, the field of computational argumentation witnessed extensive effort to address the automatic generation of arguments. However, existing approaches do not perform any audience-specific adaptation. In this work, we aim to bridge this gap by studying the task of belief-based claim generation: Given a controversial topic and a set of beliefs, generate an argumentative claim tailored to the beliefs. To tackle this task, we model the people's prior beliefs through their stances on controversial topics and extend state-of-the-art text generation models to generate claims conditioned on the beliefs. Our automatic evaluation confirms the ability of our approach to adapt claims to a set of given beliefs. In a manual study, we additionally evaluate the generated claims in terms of informativeness and their likelihood to be uttered by someone with a respective belief. Our results reveal the limitations of modeling users' beliefs based on their stances, but demonstrate the potential of encoding beliefs into argumentative texts, laying the ground for future exploration of audience reach.
翻译:从事辩论性讨论时, 熟练的人类辩论者根据观众的信仰提出主张, 以建立有效的论据。 最近, 计算辩论领域目睹了处理自动产生论据的广泛努力。 但是, 现有办法并不产生任何针对观众的适应性。 在这项工作中, 我们的目标是通过研究基于信仰的主张产生的任务来弥补这一差距: 鉴于一个有争议的议题和一套信仰, 产生与信仰相适应的、 具有争议性的主张。 为了完成这项任务, 我们通过人们对有争议的议题的立场来模拟人们先前的信仰, 并扩大最先进的文本生成模型, 以产生以信仰为条件的主张。 我们的自动评估证实了我们使主张适应一套特定信仰的方法的能力。 在一项手册研究中,我们进一步从信息性的角度来评估所产生的主张, 以及这些主张有可能由具有相关信仰的人发表。 我们的结果揭示了基于其立场的模拟使用者信仰的局限性, 但也展示了将信仰编码成争论性文本的潜力, 为未来探索受众接触的范围打下的基础。