Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying out modifications to a graph representing spatial correlations; specifically, they delete edges of the planar graph derived from border-sharing between geographic regions in order to maximise a specific objective function. In this paper we address the computational complexity of the associated graph optimisation problem. We demonstrate that this problem cannot be solved in polynomial time unless P = NP; we further show intractability for two simpler variants of the problem. We follow these results with two parameterised algorithms that exactly solve the problem. Both of these solve not only the decision problem, but also enumerate all solutions with polynomial time precalculation, delay, and postcalculation time in respective restricted settings. For this problem, efficient enumeration allows the uncertainty in the spatial correlation to be utilised in the modelling. The first enumeration algorithm utilises dynamic programming on a tree decomposition, and has polynomial time precalculation and linear delay if both the treewidth and maximum degree are bounded. The second algorithm is restricted to problem instances with maximum degree three, as may arise from triangulations of planar surfaces, but can output all solutions with FPT precalculation time and linear delay when the maximum number of edges that can be removed is taken as the parameter.
翻译:理解空间相关性在许多领域至关重要, 包括流行病学和社会科学。 Lee、 Meeks 和 Pettersson (Stat. comput. 2021) 最近显示, 可以通过修改代表空间相关性的图表, 来改进对等单位计数数据的推断; 具体地说, 它们删除来自地理区域间边界共享的平面图边缘, 以便最大限度地实现一个特定的目标功能。 在本文中, 我们处理相关图形优化问题的计算复杂性。 我们证明, 除非 P = NP, 否则, 这个问题无法在多元时间里得到解决; 我们进一步显示, 问题的两个更简单的变异体是不可被吸引的。 我们通过两种参数化的算法来跟踪这些结果, 不仅解决了空间相关性; 具体地平面关系; 不仅解决了决定问题, 而且还用混合时间预估量、 延迟和后计计时间时间长度来列出所有解决方案。 对于这一问题, 高效的计数允许在模拟中使用空间相关性的不确定性。 第一次算算算算算法在树分解位置上使用了动态的编程, 并且从线上定时间标定的精确度的精确度计为三度的延迟, 延度是, 直线前的顺序的延度是分度的, 。 直线性延为分度为分度为分度为分度为分度为分度, 。