Autonomous exploration in unknown environments using mobile robots is the pillar of many robotic applications. Existing exploration frameworks either select the nearest geometric frontier or the nearest information-theoretic frontier. However, just because a frontier itself is informative does not necessarily mean that the robot will be in an informative area after reaching that frontier. To fill this gap, we propose to use a multi-objective variant of Monte-Carlo tree search that provides a non-myopic Pareto optimal action sequence leading the robot to a frontier with the greatest extent of unknown area uncovering. We also adopted Bayesian Hilbert Map (BHM) for continuous occupancy mapping and made it more applicable to real-time tasks.
翻译:使用移动机器人在未知环境中进行自主探索是许多机器人应用的支柱。现有的勘探框架要么选择最近的几何边疆,要么选择最接近的信息理论边疆。然而,仅仅因为边界本身信息丰富,并不一定意味着机器人在到达该边疆后将进入信息区。为填补这一空白,我们提议使用蒙特-卡洛树搜索的多目标变量,提供非微型Pareto最佳行动序列,使机器人进入最未知区域发现最多的边疆。我们还采用了Bayesian Hilbert地图(BHM)进行连续占用测绘,使之更适用于实时任务。