M. Christandl conjectured that the composition of any trace preserving PPT map with itself is entanglement breaking. We prove that Christandl's conjecture holds asymptotically by showing that the distance between the iterates of any unital or trace preserving PPT map and the set of entanglement breaking maps tends to zero. Finally, for every graph we define a one-parameter family of maps on matrices and determine the least value of the parameter such that the map is variously, positive, completely positive, PPT and entanglement breaking in terms of properties of the graph. Our estimates are sharp enough to conclude that Christandl's conjecture holds for these families.
翻译:Christandl 推测保存 PPT 地图的任何痕量的构成本身是纠缠不休的。我们通过显示保存 PPT 地图的任何单体或痕量的纵圈与一套纠结断的地图之间的距离为零,来证明Christandl 的猜想无症状。最后,对于每一个图来说,我们在矩阵上定义了地图的单数系列,并确定参数的最小值,使地图具有不同、正数、完全正数、PPPT 和相纠缠的特性。我们的估计足够尖锐,足以得出Christandl 的猜想为这些家庭所持有。