Expressive voice conversion performs identity conversion for emotional speakers by jointly converting speaker identity and speaker-dependent emotion style. Due to the hierarchical structure of speech emotion, it is challenging to disentangle the speaker-dependent emotional style for expressive voice conversion. Motivated by the recent success on speaker disentanglement with variational autoencoder (VAE), we propose an expressive voice conversion framework which can effectively disentangle linguistic content, speaker identity, pitch, and emotional style information. We study the use of emotion encoder to model emotional style explicitly, and introduce mutual information (MI) losses to reduce the irrelevant information from the disentangled emotion representations. At run-time, our proposed framework can convert both speaker identity and speaker-dependent emotional style without the need for parallel data. Experimental results validate the effectiveness of our proposed framework in both objective and subjective evaluations.


翻译:表达式声音转换通过联合转换演讲人身份和依赖演讲人的情绪风格,使感官人的身份转换。由于语言情感的等级结构,将依赖演讲人的情感风格分解为表达式声音转换具有挑战性。由于最近发言者与变异自动读数器(VAE)脱钩的成功,我们提议了一个表达式声音转换框架,可以有效地分解语言内容、声音身份、声调和情感风格信息。我们研究如何使用情感编码来明确模拟情感风格,并引入相互信息(MI)损失,以减少来自分解的情感表达的不相干的信息。在运行时,我们提议的框架可以转换发言者的身份和依赖演讲人的情感风格,而不需要平行数据。实验结果验证了我们拟议框架在客观和主观评价方面的有效性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
3+阅读 · 2018年12月19日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员