PyTorch \texttt{2.x} introduces a compiler designed to accelerate deep learning programs. However, for machine learning researchers, adapting to the PyTorch compiler to full potential can be challenging. The compiler operates at the Python bytecode level, making it appear as an opaque box. To address this, we introduce \texttt{depyf}, a tool designed to demystify the inner workings of the PyTorch compiler. \texttt{depyf} decompiles bytecode generated by PyTorch back into equivalent source code, and establishes connections between in-memory code objects and their on-disk source code counterparts. This feature enables users to step through the source code line by line using debuggers, thus enhancing their understanding of the underlying processes. Notably, \texttt{depyf} is non-intrusive and user-friendly, primarily relying on two convenient context managers for its core functionality. The project is \href{https://github.com/thuml/depyf}{ openly available} and is recognized as a \href{https://pytorch.org/ecosystem/}{PyTorch ecosystem project}.
翻译:暂无翻译