A well-designed recommender system can accurately capture the attributes of users and items, reflecting the unique preferences of individuals. Traditional recommendation techniques usually focus on modeling the singular type of behaviors between users and items. However, in many practical recommendation scenarios (e.g., social media, e-commerce), there exist multi-typed interactive behaviors in user-item relationships, such as click, tag-as-favorite, and purchase in online shopping platforms. Thus, how to make full use of multi-behavior information for recommendation is of great importance to the existing system, which presents challenges in two aspects that need to be explored: (1) Utilizing users' personalized preferences to capture multi-behavioral dependencies; (2) Dealing with the insufficient recommendation caused by sparse supervision signal for target behavior. In this work, we propose a Knowledge Enhancement Multi-Behavior Contrastive Learning Recommendation (KMCLR) framework, including two Contrastive Learning tasks and three functional modules to tackle the above challenges, respectively. In particular, we design the multi-behavior learning module to extract users' personalized behavior information for user-embedding enhancement, and utilize knowledge graph in the knowledge enhancement module to derive more robust knowledge-aware representations for items. In addition, in the optimization stage, we model the coarse-grained commonalities and the fine-grained differences between multi-behavior of users to further improve the recommendation effect. Extensive experiments and ablation tests on the three real-world datasets indicate our KMCLR outperforms various state-of-the-art recommendation methods and verify the effectiveness of our method.


翻译:设计完善的推荐系统可以准确地捕捉用户和项目的属性,反映个人的独特偏好。传统推荐技术通常侧重于模拟用户和项目之间的单一行为类型。然而,在许多实用的建议方案(例如社交媒体、电子商务)中,在用户-项目关系中存在多种类型的互动行为,如点击、标签和爱好,以及在网上购物平台中购买。因此,如何充分利用多行为信息来提出建议对于现有系统非常重要,这在两个方面提出了需要探讨的挑战:(1) 利用用户个人化的偏好来捕捉多种行为和项目之间的多行为依赖性;(2) 处理目标行为监督信号分散造成的不充分建议。在这项工作中,我们提议建立一个知识增强多行为对比学习建议(KMCLR)框架,包括两个对比学习任务和三个功能模块,分别用来应对上述挑战。特别是,我们设计多行为学习模块模块模块模块,以提取用户的精细个人行为测试信息,用于用户-系统化数据格式化模型的升级,并用我们的数据格式化模型和系统化系统化模型化模型系统,用于用户-更强的系统化数据格式化模型化模型,用于改进和系统化数据格式化模型的改进。在系统化模型中,利用我们改进和系统化数据格式化模型化模型化模型化模型化模型化模型中,改进和系统化模型化模型化模型化模型化模型化数据演示中,用于改进和系统化数据化模型化模型化模型化模型化的改进和系统化模型化模型化模型化模型改进和系统化模型改进和系统改进和系统化的学习项目,以改进和系统化模型化模型化的模型化的模型化模型化的模型化的模型化模型化模型化数据演示,以改进。</s>

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员