项目名称: 表面等离子体共振纳米结构在原子尺度下的强耦合行为研究

项目编号: No.11274107

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 段辉高

作者单位: 湖南大学

项目金额: 90万元

中文摘要: 表面等离子体共振模式的耦合是指两个或者多个独立的表面等离子体纳米结构相互靠近时,纳米结构原本独立的共振模式将发生能量偏移。偏移的程度与纳米结构之间的间隙以及填充物有关。间隙越小,耦合越强烈,能量偏移越大,同时其共振对间隙周围的环境变化响应越灵敏,因此该体系具有丰富的新物理内容和潜在的应用。本项目将致力于研究表面等离子体共振在原子尺度下的强耦合行为。主要内容包括:(1)精确可控地制作具有原子尺度间距或者互连的二聚体(dimer)金属纳米结构;(2)通过光谱和电子谱表征方式在单纳米粒子尺度下对制作的结构进行关联表征,得到纳米结构表面等离子体共振在原子尺度下的新型耦合特征;(3)通过测试强耦合纳米体系的隧穿、弹道输运等电学性能,得到金属纳米结构通过电子输运影响其光学性能的物理规律;(4)探索强耦合表面等离子体系统的光电耦合特性,为制作基于表面等离子体共振的光电集成纳米器件与系统提供物理基础。

中文关键词: 表面等离子体共振;金属纳米结构;强耦合;原子尺度;纳米加工

英文摘要: Plasmon coupling occurs in two close plasmonic nanostructures with small gaps, leading to the energy shift of the initial plasmon modes. The energy shift is mainly determined by the nanogap size and the filling materials. Smaller nanogap results in stronger plasmon coupling, causing larger energy shift of the plasmon resonance. In this case, the plasmon resonance also becomes more sensitive to the surrounding media, which makes a strong coupling system fundamentally interesting and also promising in detecting single molecules. In this project, we propose to study the strong plasmon coupling behavior of plasmonic structures at the atomic level. The main research plans include 4 aspects. Firstly, we will develop methods to fabricate dimer structures with atomic scale nanogaps or conductive nanochannels. Secondly, we will do correlated characterizations on the fabricated plasmonic structures using scattering, photoluminescence, electron energy-loss spectroscopy, and cathode luminescence. With these correlated characterizations, we can obtain the mechanism of the strong plasmon coupling behavior at the atomic scale. Thirdly, we will test the tunneling and ballistic transport of the strongly coupled plasmonic system to expolre how charge transport affects the optical properties of metal nanostructures. Finally, we wi

英文关键词: Plasmon resonance;Metal nanostructures;Strong coupling;Atomic scale;Nanofabrication

成为VIP会员查看完整内容
0

相关内容

专知会员服务
52+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
23+阅读 · 2021年8月1日
专知会员服务
12+阅读 · 2021年7月2日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
54+阅读 · 2021年2月22日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
20+阅读 · 2021年9月21日
小贴士
相关VIP内容
专知会员服务
52+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
23+阅读 · 2021年8月1日
专知会员服务
12+阅读 · 2021年7月2日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
54+阅读 · 2021年2月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员