We study a longstanding question of Aaronson and Kuperberg on whether there exists a classical oracle separating $\mathsf{QMA}$ from $\mathsf{QCMA}$. Settling this question in either direction would yield insight into the power of quantum proofs over classical proofs. We show that such an oracle exists if a certain quantum pseudorandomness conjecture holds. Roughly speaking, the conjecture posits that quantum algorithms cannot, by making few queries, distinguish between the uniform distribution over permutations versus permutations drawn from so-called "dense" distributions. Our result can be viewed as establishing a "win-win" scenario: \emph{either} there is a classical oracle separation of $\QMA$ from $\QCMA$, \emph{or} there is quantum advantage in distinguishing pseudorandom distributions on permutations.
翻译:暂无翻译