This study presents contemporaneous modeling of asset return and price range within the framework of stochastic volatility with leverage. A new representation of the probability density function for the price range is provided, and its accurate sampling algorithm is developed. A Bayesian estimation using Markov chain Monte Carlo (MCMC) method is provided for the model parameters and unobserved variables. MCMC samples can be generated rigorously, despite the estimation procedure requiring sampling from a density function with the sum of an infinite series. The empirical results obtained using data from the U.S. market indices are consistent with the stylized facts in the financial market, such as the existence of the leverage effect. In addition, to explore the model's predictive ability, a model comparison based on the volatility forecast performance is conducted.
翻译:本研究介绍了在利用杠杆的随机波动框架内对资产回报和价格范围进行同时建模的情况;提供了价格范围概率密度功能的新表示,并制定了精确的抽样算法;提供了使用Markov链Monte Carlo(MCMCC)方法对模型参数和未观测到的变量进行的巴伊西亚估计;可以严格生成MCMCC样本,尽管估计程序要求从密度函数进行抽样,与无限系列之和;使用美国市场指数数据得出的实证结果符合金融市场的典型事实,例如杠杆效应的存在;此外,为了探索模型的预测能力,还根据波动预测性绩效进行模型比较。