This paper considers a novel multi-agent linear stochastic approximation algorithm driven by Markovian noise and general consensus-type interaction, in which each agent evolves according to its local stochastic approximation process which depends on the information from its neighbors. The interconnection structure among the agents is described by a time-varying directed graph. While the convergence of consensus-based stochastic approximation algorithms when the interconnection among the agents is described by doubly stochastic matrices (at least in expectation) has been studied, less is known about the case when the interconnection matrix is simply stochastic. For any uniformly strongly connected graph sequences whose associated interaction matrices are stochastic, the paper derives finite-time bounds on the mean-square error, defined as the deviation of the output of the algorithm from the unique equilibrium point of the associated ordinary differential equation. For the case of interconnection matrices being stochastic, the equilibrium point can be any unspecified convex combination of the local equilibria of all the agents in the absence of communication. Both the cases with constant and time-varying step-sizes are considered. In the case when the convex combination is required to be a straight average and interaction between any pair of neighboring agents may be uni-directional, so that doubly stochastic matrices cannot be implemented in a distributed manner, the paper proposes a push-sum-type distributed stochastic approximation algorithm and provides its finite-time bound for the time-varying step-size case by leveraging the analysis for the consensus-type algorithm with stochastic matrices and developing novel properties of the push-sum algorithm.
翻译:本文审视了由Markovian噪音和一般共识型互动驱动的新型多剂线性线性近距离算法, 由Markovian噪音和一般共识型互动所驱动, 每个代理商根据取决于邻居信息的本地随机近距离近距离进程演化。 代理商之间的互联结构用一个时间变化方向图描述。 当代理商之间的互联被二倍的随机矩阵描述时, 基于共识的随机近距离算法的趋同性算法已经趋同( 至少在预期中), 当互连矩阵只是随机化时, 更不为人所知。 对于任何具有一致性、 相联式相联的图表序列序列, 其相关交互矩阵是随机相近的。 当算法的输出偏离了相关普通差异方方程的独特平衡点时, 平衡点可能是所有代理商在缺乏沟通的情况下, 以固定和时间变化的步相交错速度顺序排列的图表序列分析都无法被考虑。 当对正向正平方平方平方平方平方平面的算法进行直向正向正平方平方平方平方平方平方平方平方平方平方平方平方平方平的变的递化分析时,, 将正平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平