This paper investigates the indistinguishable points (difficult to predict label) in semantic segmentation for large-scale 3D point clouds. The indistinguishable points consist of those located in complex boundary, points with similar local textures but different categories, and points in isolate small hard areas, which largely harm the performance of 3D semantic segmentation. To address this challenge, we propose a novel Indistinguishable Area Focalization Network (IAF-Net), which selects indistinguishable points adaptively by utilizing the hierarchical semantic features and enhances fine-grained features for points especially those indistinguishable points. We also introduce multi-stage loss to improve the feature representation in a progressive way. Moreover, in order to analyze the segmentation performances of indistinguishable areas, we propose a new evaluation metric called Indistinguishable Points Based Metric (IPBM). Our IAF-Net achieves the comparable results with state-of-the-art performance on several popular 3D point cloud datasets e.g. S3DIS and ScanNet, and clearly outperforms other methods on IPBM.
翻译:本文调查了大 3D 点云的语义分解中无法分解的点( 难以预测标签) 。 无法分解的点包括位于复杂边界中的点、 具有相似的本地纹理但不同类别的点、 分离小硬区域中的点,这在很大程度上损害了 3D 语义分解的性能。 为了应对这一挑战, 我们提议了一个新的不可分化区域坐标网( IAF- Net), 利用等级的语义特征来选择无法分解的点, 并增强各点, 特别是不可分解的点的细微分特征。 我们还引入了多阶段损失, 以渐进的方式改进地段的表达。 此外, 为了分析不可分解区域的分解性表现, 我们提出了一个新的评价指标, 叫做基于 气象的不可分化点( IPBM) (IPBM) 。 我们的 IAF- Net 网络在多个流行的 3D 点数据集 e. g. S3DIS 和 其它显像性 IPDIS 和 CAR 方法上, 。