3D lung segmentation is essential since it processes the volumetric information of the lungs, removes the unnecessary areas of the scan, and segments the actual area of the lungs in a 3D volume. Recently, the deep learning model, such as U-Net outperforms other network architectures for biomedical image segmentation. In this paper, we propose a novel model, namely, Recurrent Residual 3D U-Net (R2U3D), for the 3D lung segmentation task. In particular, the proposed model integrates 3D convolution into the Recurrent Residual Neural Network based on U-Net. It helps learn spatial dependencies in 3D and increases the propagation of 3D volumetric information. The proposed R2U3D network is trained on the publicly available dataset LUNA16 and it achieves state-of-the-art performance on both LUNA16 (testing set) and VESSEL12 dataset. In addition, we show that training the R2U3D model with a smaller number of CT scans, i.e., 100 scans, without applying data augmentation achieves an outstanding result in terms of Soft Dice Similarity Coefficient (Soft-DSC) of 0.9920.
翻译:3D 肺部截断至关重要,因为它处理肺的体积信息,消除扫描不必要的区域,并将肺部的实际区域分成3D卷。最近,深学习模型,如U-Net优于生物医学图像分割的其他网络结构。在本文件中,我们为3D 肺部分割任务提出了一个新颖模型,即经常性3D U-Net(R2U3D) 和 VESSEL12 数据库。特别是,拟议的模型将3D 转化为基于 U-Net 的经常性残余神经网络。它有助于学习3D 的空间依赖性,并增加3D 体信息的传播。拟议的R2U3D 网络在公开提供的数据集LUNA16 (测试集) 和 VESSEL12 数据集方面得到了最新业绩。此外,我们表明,用较少数量的CT扫描(即100 扫描)来培训R2U3D模型,在不应用 SoftDS-DSvality软件的情况下,在 So-20DS-DS-DSvaly中取得了杰出的成果。