Two recent lower bounds on the compressiblity of repetitive sequences, $\delta \le \gamma$, have received much attention. It has been shown that a string $S[1..n]$ can be represented within the optimal $O(\delta\log\frac{n}{\delta})$ space, and further, that within that space one can find all the $occ$ occurrences in $S$ of any pattern of length $m$ in time $O(m\log n + occ \log^\epsilon n)$ for any constant $\epsilon>0$. Instead, the near-optimal search time $O(m+(occ+1)\log^\epsilon n)$ was achieved only within $O(\gamma\log\frac{n}{\gamma})$ space. Both results are based on considerably different locally consistent parsing techniques. The question of whether the better search time could be obtained within the $\delta$-optimal space was open. In this paper we prove that both techniques can indeed be combined in order to obtain the best of both worlds, $O(m+(occ+1)\log^\epsilon n)$ search time within $O(\delta\log\frac{n}{\delta})$ space.


翻译:关于重复序列压缩的最近两个较低范围, $( delta n + oc= log epsilon n), 得到了很多关注。 已经显示, 一个字符串$[ 1. n] 可以在最佳的 $O (\ delta\ log\ frac{ n\ delta}) 空间内表示, 而且在这个空间内, 人们可以发现所有美元( $occc) 发生时间长度为美元( 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 。 相反, 一个字符串 $( + (oc+ log\ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 两种方法都能够在最佳的搜索中获得最佳搜索/ / / / i/ / / i/ i/ / / / i/ i/ i/ / / 或 或 或 美元/ 美元/ / 美元/ c/ / 或 美元/ 美元/ 美元/ i/ 美元/ / / 美元/ 美元/ 或) 或) 或 美元/ c/ 或 或 或 或 或 或 或 双/ / c/ c/ 或 或 或 / / 或 / / 或 或 或 i/ 或 或 或 或 或 / / / / 或 或 或 / 或 或 或 或 或 或 或 或 或 或 或 或 美元/ 美元/ 美元/ 美元/ 美元/ 或 美元/ 美元/ 美元/ 或 美元/ 美元/ 美元/ 或

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员