We prove that to each real singularity $f: (\mathbb{R}^{n+1}, 0) \to (\mathbb{R}, 0)$ one can associate two systems of differential equations $\mathfrak{g}^{k\pm}_f$ which are pushforwards in the category of $\mathcal{D}$-modules over $\mathbb{R}^{\pm}$, of the sheaf of real analytic functions on the total space of the positive, respectively negative, Milnor fibration. We prove that for $k=0$ if $f$ is an isolated singularity then $\mathfrak{g}^{\pm}$ determines the the $n$-th homology groups of the positive, respectively negative, Milnor fibre. We then calculate $\mathfrak{g}^{+}$ for ordinary quadratic singularities and prove that under certain conditions on the choice of morsification, one recovers the top homology groups of the Milnor fibers of any isolated singularity $f$. As an application we construct a public-key encryption scheme based on morsification of singularities.
翻译:我们证明,对于每个真实的奇数$f:(\ mathbb{R ⁇ +1},0)\to(\ mathbb{R},0)\to(\ mathbb{g}k\pm}f$),人们可以将两种差异方程的系统($\mathfrak{g}k\k\pm}f$)联系起来,在美元=mathcal{D}$-moules 的类别中,在美元=mathbb{D}$-moules 以上,在美元=mathbb{R ⁇ }{R ⁇ pm} 的类别中,在正数的总面积中,实际分析函数的大小,分别是负数。我们证明,如果美元=0美元是孤立的单数,那么,我们就能将美元=0美元。我们证明,如果美元是单数的单数单数,那么,那么,我们就能用美元作为单数单数单数单数的单数单数单数,那么,我们就可以将两个不同的单数的单数组的单数,然后确定正数,然后确定正数的正数组。