In the area of cryptography, fully homomorphic encryption (FHE) enables any entity to perform arbitrary computation on encrypted data without decrypting the ciphertexts. An ongoing group-theoretic approach to construct FHE schemes uses a certain "compression" function $F(x)$ implemented by group operators on a given finite group $G$ (i.e., it is given by a sequence of elements of $G$ and variable $x$), which satisfies that $F(1) = 1$ and $F(\sigma) = F(\sigma^2) = \sigma$ where $\sigma \in G$ is some element of order three. The previous work gave an example of such $F$ over $G = S_5$ by just a heuristic approach. In this paper, we systematically study the possibilities of such $F$. We construct a shortest possible $F$ over smaller group $G = A_5$, and prove that no such $F$ exists over other groups $G$ of order up to $60 = |A_5|$.
翻译:在加密领域,完全同质加密(FHE)使任何实体能够对加密数据进行任意计算,而不必解密密码文本。正在使用的一组理论方法在构建FHE计划时使用某种“压缩”功能$F(x)美元(即由一组操作者在一定的固定组别$G美元(即由1G美元和可变美元组成的一系列要素提供),满足了1美元=1美元和1美元=F(gma)=F(gma)2)=\gma美元,而$sigma =gma $(以G$=in G$为某种顺序要素)。以前的工作举例说明了仅用超额$G=S5美元这种超额美元的方法。在本文中,我们系统地研究这种美元的可能性。我们建造了一个最短的可能超过1美元小组别G美元=A_5美元,并证明在不超过60美元的其他组别次序上不存在这种F$($G$=Z_A_5美元)。