Let $\mathcal{G}$ be a finite set of matrices in a unipotent matrix group $G$ over $\mathbb{Q}$, where $G$ has nilpotency class at most ten. We exhibit a polynomial time algorithm that computes the subset of $\mathcal{G}$ which generates the group of units of the semigroup $\langle\mathcal{G}\rangle$ generated by $\mathcal{G}$. In particular, this result shows that the Identity Problem and the Group Problem are decidable in polynomial time for finitely generated subsemigroups of the groups $\mathsf{UT}(11, \mathbb{Q})^n$. Another important implication of our result is the decidability of the Identity Problem and the Group Problem within finitely generated nilpotent groups of class at most ten. Our main idea is to analyze the logarithm of the matrices appearing in $\langle\mathcal{G}\rangle$. This allows us to employ Lie algebra methods to study this semigroup. In particular, we prove several new properties of the Baker-Campbell-Hausdorff formula, which help us characterize the convex cone spanned by the elements in $\log \langle\mathcal{G}\rangle$. Furthermore, we formulate a sufficient condition in order for our results to generalize to unipotent matrix groups of class $d > 10$. For every such $d$, we exhibit an effective procedure that verifies this sufficient condition in case it is true.
翻译:$mathcal{G} $ 在单能力矩阵组中, $G$ 是一个有限的矩阵组, $G$ 超过$mathbb $, $G$在最多十美元 。 我们展示了一个多元时间算法, 计算$mathcal{G} $的子集, 产生由$\ mathcal{G} 产生的半组的单位组 {G ⁇ rangle$。 特别是, 这个结果显示, 身份问题和集团问题在最小生成的组子组 $\ mathbb $ 的多元时间里是可以变异的 $G$ 。 我们结果的另一个重要影响是, 身份问题和集团在有限生成的类中, $lgnball\ massal 组的单位组。 我们的主要想法是分析 $lgleglex\ mal$G\ grangal$。 这让我们在最小的等级组中应用 leaqalbrbal 方法来进行新的 max romax romax rodeal rode cal rodeal romax 。