In this paper, we introduce a new concept, namely $\epsilon$-arithmetics, for real vectors of any fixed dimension. The basic idea is to use vectors of rational values (called rational vectors) to approximate vectors of real values of the same dimension within $\epsilon$ range. For rational vectors of a fixed dimension $m$, they can form a field that is an $m$th order extension $\mathbf{Q}(\alpha)$ of the rational field $\mathbf{Q}$ where $\alpha$ has its minimal polynomial of degree $m$ over $\mathbf{Q}$. Then, the arithmetics, such as addition, subtraction, multiplication, and division, of real vectors can be defined by using that of their approximated rational vectors within $\epsilon$ range. We also define complex conjugate of a real vector and then inner product and convolution of two real vectors and two real vector sequences (signals) of finite length. With these newly defined concepts for real vectors, linear processing, such as filtering, ARMA modeling, and least squares fitting, can be implemented to real vector-valued signals, which will broaden the existing linear processing to scalar-valued signals.


翻译:在本文中,我们引入了一个新的概念, 即$\ epsilon$- arthmetics, 用于任何固定维度的真正矢量。 基本的想法是使用理性值的矢量( 所谓的理性矢量) 来接近在$\ epsilon 范围内同一维度的真正矢量的矢量。 对于固定维度的理性矢量的理性矢量, $m, 它们可以形成一个字段, 即 $\ mathbf ⁇ (\ alpha), 美元, 美元, 任何固定维度的真正矢量的最小多元度为$$ 。 基本的想法是使用合理值的矢量的矢量( 所谓的理性矢量) 来接近在 $\ epsluslonon 范围内的同一维度的真正矢量的矢量的矢量( $\ mathbf) 。 然后, 算算算算算算,,, 例如添加、 减、 倍增、 倍增、 和 等现有 直线性 信标的 等, 等 将安装到 直径 等 的 等 直径 的 等 的 等 直压 等 的 的 。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月2日
Arxiv
65+阅读 · 2021年6月18日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员