We develop the few-shot continual learning task from first principles and hypothesize an evolutionary motivation and mechanism of action for executive function as a contrastive value policy which resamples and relabels perception data via hindsight summarization to minimize attended prediction error, similar to an online prompt engineering problem. This is made feasible by the use of a memory policy and a pretrained network with inductive biases for a grammar of learning and is trained to maximize evolutionary survival. We show how this model of executive function can be used to implement hypothesis testing as a stream of consciousness and may explain observations of human few-shot learning and neuroanatomy.
翻译:我们从最初的原则中发展了少数的不断学习任务,并假想一种演变动力和行动机制,作为具有对比价值的政策,通过事后视觉总结来重新标注和重新标注感知数据,以尽量减少伴随的预测错误,类似于在线快速工程问题,通过使用记忆政策和具有感应偏差的预培训网络进行学习文法学习,并受过最大限度地提高进化生存能力的培训,我们展示了如何利用这种执行功能模式进行假想测试,作为意识流,并可以解释关于人类少见学习和神经外科学的观察结果。