Self-supervised contrastive learning is a powerful tool to learn visual representation without labels. Prior work has primarily focused on evaluating the recognition accuracy of various pre-training algorithms, but has overlooked other behavioral aspects. In addition to accuracy, distributional robustness plays a critical role in the reliability of machine learning models. We design and conduct a series of robustness tests to quantify the behavioral differences between contrastive learning and supervised learning to downstream or pre-training data distribution changes. These tests leverage data corruptions at multiple levels, ranging from pixel-level gamma distortion to patch-level shuffling and to dataset-level distribution shift. Our tests unveil intriguing robustness behaviors of contrastive and supervised learning. On the one hand, under downstream corruptions, we generally observe that contrastive learning is surprisingly more robust than supervised learning. On the other hand, under pre-training corruptions, we find contrastive learning vulnerable to patch shuffling and pixel intensity change, yet less sensitive to dataset-level distribution change. We attempt to explain these results through the role of data augmentation and feature space properties. Our insight has implications in improving the downstream robustness of supervised learning.
翻译:自我监督的对比学习是学习没有标签的视觉表现的有力工具。 先前的工作主要侧重于评估各种培训前算法的识别准确性,但忽略了其他行为方面。 除了准确性, 分布稳健性在机器学习模型的可靠性方面发挥着关键作用。 我们设计并进行了一系列稳健性测试,以量化对比学习和监督学习与下游或培训前数据分配变化之间的行为差异。 这些测试在多个层面引发数据腐败,从像素级伽马扭曲到补丁级平整和数据设置分布变化。 我们的测试揭示了对比性和监管性学习的令人感兴趣的强健性行为。 一方面,在下游腐败下,我们一般认为对比性学习比监管性学习更加有力。 另一方面,在培训前的腐败下,我们发现对比性学习容易被打乱和像素强度变化,但对数据集分布变化则不那么敏感。 我们试图通过数据增强和特征空间属性的作用来解释这些结果。 我们的洞察力在改进监管下游学习的稳健性影响。