This article considers a stable vector autoregressive (VAR) model and investigates return predictability in a Bayesian context. The VAR system comprises asset returns and the dividend-price ratio as proposed in Cochrane (2008), and allows pinning down the question of return predictability to the value of one particular model parameter. We develop a new shrinkage type prior for this parameter and compare our Bayesian approach to ordinary least squares estimation and to the reduced-bias estimator proposed in Amihud and Hurvich (2004). A simulation study shows that the Bayesian approach dominates the reduced-bias estimator in terms of observed size (false positive) and power (false negative). We apply our methodology to annual CRSP value-weighted returns running, respectively, from 1926 to 2004 and from 1953 to 2021. For the first sample, the Bayesian approach supports the hypothesis of no return predictability, while for the second data set weak evidence for predictability is observed.
翻译:本条考虑了稳定的矢量自动递减模式(VAR),并调查了巴伊西亚背景下的回报可预测性。VAR系统包括Cochrane(2008年)中提议的资产回报率和股息-价格比率(股息-价格比率),从而可以将回报可预测性问题划入一个特定模型参数的价值。我们在这一参数之前开发了一种新的缩水类型,并将我们的Bayesian方法与Amihud和Hurvich(2004年)中提议的普通最小方位估算和减少位数估测器进行比较。一项模拟研究表明,Bayesian方法在观察到的大小(假正数)和功率(假正数)方面主导了减少位数估测器。我们采用了我们的方法,分别从1926年到2004年和1953年到2021年的CRSP年度加权值回报。关于第一个样本,Bayesian方法支持没有回报可预测性的假设,而关于第二个数据所设定的预测力薄弱证据则被观察到。