It is challenging to directly estimate the geometry of human from a single image due to the high diversity and complexity of body shapes with the various clothing styles. Most of model-based approaches are limited to predict the shape and pose of a minimally clothed body with over-smoothing surface. Although capturing the fine detailed geometries, the model-free methods are lack of the fixed mesh topology. To address these issues, we propose a novel topology-preserved human reconstruction approach by bridging the gap between model-based and model-free human reconstruction. We present an end-to-end neural network that simultaneously predicts the pixel-aligned implicit surface and the explicit mesh model built by graph convolutional neural network. Moreover, an extra graph convolutional neural network is employed to estimate the vertex offsets between the implicit surface and parametric mesh model. Finally, we suggest an efficient implicit registration method to refine the neural network output in implicit space. Experiments on DeepHuman dataset showed that our approach is effective.


翻译:直接从单一图像中估计人类的几何是具有挑战性的,因为各种服装风格的体形种类繁多和复杂。基于模型的方法大多限于预测一个布满最细的、有过度移动表面的物体的形状和形状。虽然捕捉了细细细的几何,但没有模型的方法缺乏固定网状地形学。为了解决这些问题,我们建议采用新的、具有地形特征的人类重建方法,缩小基于模型的和没有模型的人类重建之间的差距。我们提出了一个端到端的神经网络,同时预测与像素接轨的暗表和由图像共振动神经网络建造的显性网状模型。此外,还使用一个外形的图形电动神经网络来估计隐含表面和对数网形模型之间的脊椎抵消。最后,我们建议一种高效的隐含登记方法,以完善隐含空间的神经网络输出。深人类数据集实验表明我们的方法是有效的。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
39+阅读 · 2019年12月5日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
VIP会员
相关VIP内容
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
39+阅读 · 2019年12月5日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员