题目: 基于深度学习的行人重识别研究进展
摘要:
行人重识别是计算机视觉领域近年来非常热的一个研究课题, 可以被视为图像检索的一个子问题, 其目标是给定一个监控行人图像检索跨设备下的该行人图像. 传统的方法依赖手工特征, 不能适应数据量很大的复杂环境。近年来随着深度学习的发展, 大量基于深度学习的行人重识别方法被提出。本文先简单介绍了该问题的定义及传统方法的局限, 并列举了一些适用于深度学习方法的行人重识别数据集。 此外我们详细地总结了一些比较典型的基于深度学习的行人重识别方法, 并比较了部分算法在 Market1501 数据集上的性能表现。最后我们对该问题未来的研究方向做了一个展望。
作者简介:
罗浩,浙江大学控制科学与工程学院智能系统与控制研究所博士研究生。2015年获得浙江大学控制科学与工程学士学位,主要研究方向为行人重识别, 多目标跟踪, 深度学习, 计算机视觉方向。
姜伟,浙江大学控制科学与工程学院智能系统与控制研究所副教授。2005年获得日本东京工业大学博士学位,主要研究方向为机器视觉, 计算机图形学, 机器学习。
范星,浙江大学控制科学与工程学院博士研究生。2015年获得浙江大学控制科学与工程学士学位,主要研究方向为行人重识别。
张思朋,2016年获得浙江大学控制科学与工程硕士学位,主要研究方向为计算机视觉, 行人重识别。