We propose Ray-ONet to reconstruct detailed 3D models from monocular images efficiently. By predicting a series of occupancy probabilities along a ray that is back-projected from a pixel in the camera coordinate, our method Ray-ONet improves the reconstruction accuracy in comparison with Occupancy Networks (ONet), while reducing the network inference complexity to O($N^2$). As a result, Ray-ONet achieves state-of-the-art performance on the ShapeNet benchmark with more than 20$\times$ speed-up at $128^3$ resolution and maintains a similar memory footprint during inference.


翻译:我们建议 Ray-ONet 高效地从单个图像中重建详细的 3D 模型。 通过预测从相机坐标像素中反射的光线上的一系列占用概率,我们的方法 Ray-ONet 提高了与占用网络(ONet)相比的重建准确性,同时将网络的推论复杂性降低到 O( N $ $ 2美元 ) 。 因此, Ray- ONet 在ShapeNet 基准上实现了最先进的性能, 超过 20 美元 的速率, 达到 128 3 美元的分辨率, 并在推断中保持类似的记忆足迹 。

1
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月16日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
相关资讯
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员