Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image containing arbitrary part of the body. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverages Fully Convolutional Network (FCN) to generate fix-sized spatial feature maps such that pixel-level features are consistent. To match a pair of person images of different sizes, a novel method called Deep Spatial feature Reconstruction (DSR) is further developed to avoid explicit alignment. Specifically, DSR exploits the reconstructing error from popular dictionary learning models to calculate the similarity between different spatial feature maps. In that way, we expect that the proposed FCN can decrease the similarity of coupled images from different persons and increase that from the same person. Experimental results on two partial person datasets demonstrate the efficiency and effectiveness of the proposed method in comparison with several state-of-the-art partial person re-id approaches. Additionally, DSR achieves competitive results on a benchmark person dataset Market1501 with 83.58\% Rank-1 accuracy.
翻译:部分身份重新确认(再定位)是一个具有挑战性的问题,因为只有几处部分观察(图像)可供匹配,然而,很少有研究为识别一个人的图像中含有任意部分身体的图像提供了灵活的解决办法。在本文件中,我们建议了一种快速和准确的匹配方法来解决这一问题。拟议方法利用全演网络来生成固定大小的空间特征地图,使像素级特征一致。为了匹配一对不同尺寸的人图像,进一步开发了称为深空间特征重建(DSR)的新颖方法,以避免明确对齐。具体地说,DSR利用流行词典学习模型的重建错误来计算不同空间特征地图之间的相似性。我们期望拟议的FCN能够减少不同人的相配图像的相似性,并增加同一个人的相近性。两个部分个人数据集的实验结果显示拟议方法与几个状态的局部人重新定位方法相比的效率和效力。此外,DSR还利用流行词典学习模型来计算不同空间特征地图之间的相似性。我们期望拟议的FCN能够减少来自不同人的相配相图像的相似性,同时增加同一人的图像。