Bilevel optimization (BO) has arisen as a powerful tool for solving many modern machine learning problems. However, due to the nested structure of BO, existing gradient-based methods require second-order derivative approximations via Jacobian- or/and Hessian-vector computations, which can be very costly in practice, especially with large neural network models. In this work, we propose a novel BO algorithm, which adopts Evolution Strategies (ES) based method to approximate the response Jacobian matrix in the hypergradient of BO, and hence fully eliminates all second-order computations. We call our algorithm as ESJ (which stands for the ES-based Jacobian method) and further extend it to the stochastic setting as ESJ-S. Theoretically, we characterize the convergence guarantee and computational complexity for our algorithms. Experimentally, we demonstrate the superiority of our proposed algorithms compared to the state of the art methods on various bilevel problems. Particularly, in our experiment in the few-shot meta-learning problem, we meta-learn the twelve millions parameters of a ResNet-12 network over the miniImageNet dataset, which evidently demonstrates the scalability of our ES-based bilevel approach and its feasibility in the large-scale setting.
翻译:双层优化(BO)是解决许多现代机器学习问题的有力工具。然而,由于BO的嵌套结构,现有基于梯度的方法要求通过Jacobian 或/和Hessian-Victor计算二阶衍生物近似值,这在实践中可能非常昂贵,特别是在大型神经网络模型方面。在这项工作中,我们提出了一个新的BO算法,采用基于进化战略(ES)的方法,以在BO的高度梯度中大致反映Jacobian矩阵的反应,从而完全消除所有二阶计算。我们称我们的算法为ESJ(代表ES基础的Jacobian方法),并将它进一步扩展至ESJ-S的随机环境。理论上,我们确定我们算法的趋同保证和计算复杂性。我们实验性地展示了我们所提议的算法相对于各种双层问题艺术方法的优越性。特别是,在我们对微小的元学习问题的实验中,我们将ResNet-12网络的1,200万参数称为ES-12(代表ES-Jacobian 方法),并进一步将其扩展为ES-S-J-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-