Computing the empirical Wasserstein distance in the Wasserstein-distance-based independence test is an optimal transport (OT) problem with a special structure. This observation inspires us to study a special type of OT problem and propose a modified Hungarian algorithm to solve it exactly. For the OT problem involving two marginals with $m$ and $n$ atoms ($m\geq n$), respectively, the computational complexity of the proposed algorithm is $O(m^2n)$. Computing the empirical Wasserstein distance in the independence test requires solving this special type of OT problem, where $m=n^2$. The associated computational complexity of the proposed algorithm is $O(n^5)$, while the order of applying the classic Hungarian algorithm is $O(n^6)$. In addition to the aforementioned special type of OT problem, it is shown that the modified Hungarian algorithm could be adopted to solve a wider range of OT problems. Broader applications of the proposed algorithm are discussed -- solving the one-to-many assignment problem and the many-to-many assignment problem. We conduct numerical experiments to validate our theoretical results. The experiment results demonstrate that the proposed modified Hungarian algorithm compares favorably with the Hungarian algorithm, the well-known Sinkhorn algorithm, and the network simplex algorithm.
翻译:在瓦塞斯坦-远距离独立测试中计算实证瓦瑟斯坦距离是一个特殊结构的最佳运输问题。 这一观察激励了我们研究一种特殊的OT问题,并提出一个修改的匈牙利算法,以精确地解决这个问题。对于分别涉及两个边际的OT问题,分别涉及美元和美元原子(m\geq n$),拟议算法的计算复杂性为$O(m%2n)美元。计算独立测试中的经验瓦瑟斯坦距离需要解决这一特殊类型的OT问题,即$m=n%2美元。拟议算法的相关计算复杂性为$O(n)5美元,而适用经典匈牙利算法的顺序是$O(n_6)美元。除了上述特殊类型的OT问题外,还表明,修改后的匈牙利算法可以用来解决更广泛的OTA问题。在独立测试中更广泛地应用拟议的算法 -- 解决一对一任务分配问题和许多对man任务分配问题。我们进行的计算方法相关的计算复杂性是$O(n_5美元),而应用典型匈牙利算法的顺序是$O(n_6),我们进行数字实验的顺序实验以证实我们所熟悉的Sliamink 的轨道算法。</s>