There has been considerable interest in designing Markov chain Monte Carlo algorithms by exploiting numerical methods for Langevin dynamics, which includes Hamiltonian dynamics as a deterministic case. A prominent approach is Hamiltonian Monte Carlo (HMC), where a leapfrog discretization of Hamiltonian dynamics is employed. We investigate a recently proposed class of irreversible sampling algorithms, called Hamiltonian assisted Metropolis sampling (HAMS), which uses an augmented target density similarly as in HMC, but involves a flexible proposal scheme and a carefully formulated acceptance-rejection scheme to achieve generalized reversibility. We show that as the step size tends to 0, the HAMS proposal satisfies a class of stochastic differential equations including Langevin dynamics as a special case. We provide theoretical results for HAMS under the univariate Gaussian setting, including the stationary variance, the expected acceptance rate, and the spectral radius. From these results, we derive default choices of tuning parameters for HAMS, such that only the step size needs to be tuned in applications. Various relatively recent algorithms for Langevin dynamics are also shown to fall in the class of HAMS proposals up to negligible differences. Our numerical experiments on sampling high-dimensional latent variables confirm that the HAMS algorithms consistently achieve superior performance, compared with several Metropolis-adjusted algorithms based on popular integrators of Langevin dynamics.


翻译:设计Markov连锁的Monte Carlo算法引起了相当大的兴趣,它利用了兰格文动力学的数字方法,其中包括汉密尔顿·蒙特卡洛(HMC)作为决定性的例子。一个突出的方法是汉密尔顿·蒙特卡洛(HMC),这是对汉密尔顿动力学的飞跃分解法。我们调查了最近提出的一类不可逆转的采样算法,称为汉密尔顿协助大都会抽样(HAMS),它使用与HMC相似的扩大目标密度,但涉及一个灵活的建议方案和精心拟订的接受-拒绝计划,以实现普遍反弹率。我们显示,随着步骤大小趋向为0,HAMS提案满足了一组类类的随机差异方程式差异,包括兰格文动力学,作为特例。我们为HAMIS提供了在单向高音频设置下的HAMS提供了理论结果,包括固定差异、预期接受率和光谱半径半径。我们从HAMS调调参数的默认选择,因此在应用程序中只需要一步尺寸调整。我们Langevin动力学的最近一些比较的算算算方法也显示,在HAMS高层次上,在SASMAMS的高级演算上具有可比较的高度变数级变。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员