Mutual information is a measure of the dependence between random variables that has been used successfully in myriad applications in many fields. Generalized mutual information measures that go beyond classical Shannon mutual information have also received much interest in these applications. We derive the mean squared error convergence rates of kernel density-based plug-in estimators of general mutual information measures between two multidimensional random variables $\mathbf{X}$ and $\mathbf{Y}$ for two cases: 1) $\mathbf{X}$ and $\mathbf{Y}$ are continuous; 2) $\mathbf{X}$ and $\mathbf{Y}$ may have any mixture of discrete and continuous components. Using the derived rates, we propose an ensemble estimator of these information measures called GENIE by taking a weighted sum of the plug-in estimators with varied bandwidths. The resulting ensemble estimators achieve the $1/N$ parametric mean squared error convergence rate when the conditional densities of the continuous variables are sufficiently smooth. To the best of our knowledge, this is the first nonparametric mutual information estimator known to achieve the parametric convergence rate for the mixture case, which frequently arises in applications (e.g. variable selection in classification). The estimator is simple to implement and it uses the solution to an offline convex optimization problem and simple plug-in estimators. A central limit theorem is also derived for the ensemble estimators and minimax rates are derived for the continuous case. We demonstrate the ensemble estimator for the mixed case on simulated data and apply the proposed estimator to analyze gene relationships in single cell data.


翻译:共享信息是衡量随机变量之间依赖性的尺度。 在许多字段中, 随机变量在许多应用中成功地应用了 。 超越 古典香农相互信息 的普通相互信息测量也对这些应用产生了很大的兴趣。 我们得出两个多维随机变量 $\ mathbf{X} 美元和 $\ mathbf{X}Y} 之间一般相互信息测量的正方差混合率。 在两个实例中, 1 $\ mathbf{X} 和 $\ mathbf{Y} 之间, 测试随机随机变量之间的依赖性。 2 $\ mathbf{X} 和 $\ mathbreme 共同信息测量率的平均值, 用于在最小的密度关系中, 以 $mathm 和 commanyalfredialal 等值计算结果, 用于在最小值中, 最精确的计算数据用于计算数据。 最精确的计算数据, 用于计算模型中, 最精确的计算数据 。 最精确的计算数据, 至最精确的精确的计算数据, 至最精确的计算数据, 至最精确的精确的计算结果的计算数据, 至最精确的精确的计算数据, 至最精确的计算数据。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月26日
Entropic estimation of optimal transport maps
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员