We propose to study the Hessian metric of a functional on the space of probability measures endowed with the Wasserstein $2$-metric. We name it transport Hessian metric, which contains and extends the classical Wasserstein-$2$ metric. We formulate several dynamical systems associated with transport Hessian metrics. Several connections between transport Hessian metrics and mathematical physics equations are discovered. E.g., the transport Hessian gradient flow, including Newton's flow, formulates a mean-field kernel Stein variational gradient flow; The transport Hessian Hamiltonian flow of Boltzmann-Shannon entropy forms the Shallow water equation; The transport Hessian gradient flow of Fisher information leads to the heat equation. Several examples and closed-form solutions for transport Hessian distances are presented.


翻译:我们提议研究以瓦塞斯坦为单位的概率测量空间的赫森测量值的赫森测量值,用2美元的量度来计算。我们称之为运输赫森测量值,它包含并扩展了古典瓦西斯坦为单位的赫森测量值。我们开发了与运输赫森测量值相关的若干动态系统。发现了赫森测量值与数学物理方程之间的若干连接。例如,包括牛顿流在内的赫森梯度的运输流,形成了一个中位内核的斯坦因变异梯度流;波尔兹曼-尚农的海森汉密尔顿流构成浅水方程的运输;渔业信息的赫森梯度流动导致热方程。提出了赫森距离运输的几个例子和封闭式解决办法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
已删除
将门创投
3+阅读 · 2019年10月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
PyTorch & PyTorch Geometric图神经网络(GNN)实战
专知
81+阅读 · 2019年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
已删除
将门创投
3+阅读 · 2019年10月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
PyTorch & PyTorch Geometric图神经网络(GNN)实战
专知
81+阅读 · 2019年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员