In this work, we study and determine the dimensions of Euclidean and Hermitian hulls of two classical propagation rules, namely, the direct sum construction and the $(\mathbf{u},\mathbf{u+v})$-construction. Some new criteria for the resulting codes derived from these two propagation rules being self-dual, self-orthogonal, or linear complementary dual (LCD) codes are given. As an application, we construct some linear codes with prescribed hull dimensions, many new binary, ternary Euclidean formally self-dual (FSD) LCD codes, and quaternary Hermitian FSD LCD codes. Some new even-like, odd-like, Euclidean and Hermitian self-orthogonal codes are also obtained. Many of {these} codes are also (almost) optimal according to the Database maintained by Markus Grassl. Our methods contribute positively to improve the lower bounds on the minimum distance of known LCD codes.
翻译:在这项工作中,我们研究和确定欧几里德和爱尔米蒂安船体的两个传统传播规则的尺寸,即直接总和的构造和美元(mathbf{u},\mathbf{u+v})的构造。从这两种传播规则中得出的新编码标准是自成一体的、自体的或线性互补的双重(LCD)编码。作为一种应用,我们制定了一些线性编码,包括规定的船体尺寸、许多新的二进制、永久的欧几里德正式的自成二进制(FSD)的编码和四进制的赫米米蒂安FSD LCD的编码。还获得了一些类似奇异的、欧几里德和赫米蒂亚的自成形编码。根据Markus Grassl维护的数据库,许多{这些编码(最接近)也是最佳的。我们的方法有助于改进已知LCD编码最低距离的较低界限。