To promote the widespread use of mobile robots in diverse fields, the performance of trajectory tracking must be ensured. To address the constraints and nonlinear features associated with mobile robot systems, we apply nonlinear model predictive control (MPC) to realize the trajectory tracking of mobile robots. Specifically, to alleviate the online computational complexity of nonlinear MPC, this paper devises a lattice piecewise affine (PWA) approximation method that can approximate both the nonlinear system and control law of explicit nonlinear MPC. The kinematic model of the mobile robot is successively linearized along the trajectory to obtain a linear time-varying description of the system, which is then expressed using a lattice PWA model. Subsequently, the nonlinear MPC problem can be transformed into a series of linear MPC problems. Furthermore, to reduce the complexity of online calculation of multiple linear MPC problems, we approximate the optimal solution of the linear MPC by using the lattice PWA model. That is, for different sampling states, the optimal control inputs are obtained, and lattice PWA approximations are constructed for the state control pairs. Simulations are performed to evaluate the performance of our method in comparison with the linear MPC and explicit linear MPC frameworks. The results show that compared with the explicit linear MPC, our method has a higher online computing speed and can decrease the offline computing time without significantly increasing the tracking error.


翻译:为了促进在不同领域广泛使用移动机器人,必须确保轨迹跟踪的性能。为了应对与移动机器人系统相关的限制和非线性特征,我们应用非线性模型预测控制(MPC)来实现移动机器人的轨迹跟踪。具体地说,为了减轻非线性MPC在线计算的复杂性,本文设计了一个拉蒂斯平方根近距离(PWA)近距离法,该方法既可以接近非线性系统,也可以接近非线性非线性MPC的控制法。移动机器人的动性模型沿着轨迹连续线直线线直线直线,以获得系统线性时间分布式描述,然后用拉蒂斯PWA模型表达。随后,非线性MPC问题可以转化为一系列线性MPC问题。此外,为了降低多线性MPC问题的在线计算的复杂性,我们通过使用拉蒂斯·PWA模型模型来比较线性MPC的最佳解决方案。对于不同的取样州,获得了最佳控制投入,而Latyce PWA近距离的精确度描述是用一个不线性直线性计算方法进行对比的直线性计算。比我们的国家的MC的直线性计算结果。模拟和直线性计算,可以比我们直线性计算机的直线性计算结果。比我们直线性计算结果。比的直线性计算方法可以比我们直线性计算出一个直线性计算。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员