Lidar became an important component of the perception systems in autonomous driving. But challenges of training data acquisition and annotation made emphasized the role of the sensor to sensor domain adaptation. In this work, we address the problem of lidar upsampling. Learning on lidar point clouds is rather a challenging task due to their irregular and sparse structure. Here we propose a method for lidar point cloud upsampling which can reconstruct fine-grained lidar scan patterns. The key idea is to utilize edge-aware dense convolutions for both feature extraction and feature expansion. Additionally applying a more accurate Sliced Wasserstein Distance facilitates learning of the fine lidar sweep structures. This in turn enables our method to employ a one-stage upsampling paradigm without the need for coarse and fine reconstruction. We conduct several experiments to evaluate our method and demonstrate that it provides better upsampling.
翻译:Lidar成为自主驱动感知系统的重要组成部分。 但是,培训数据获取和注释的挑战强调了传感器对感官域适应的作用。 在这项工作中,我们解决了利达点采样问题。 学习利达点云由于结构不正规和稀少,是一项相当艰巨的任务。 我们在这里提出了一个利达点采样方法,可以重建精细的利达点扫描模式。 关键的想法是利用边觉稠密的变异进行特征提取和特征扩展。 此外,应用更精确的斯利切德·瓦西尔斯坦距离(Sliced Vasserstein Learther)有助于学习精细的利达点扫瞄结构。 这反过来又使我们的方法能够采用一个阶段性采样,而不需要粗糙和细的重建。 我们进行了一些实验,以评估我们的方法,并证明它提供了更好的增样。