With the rapid development of Pattern Recognition and Computer Vision technologies, tasks like object detection or semantic segmentation have achieved even better accuracy than human beings. Based on these solid foundations, autonomous driving is becoming an important research direction, aiming to revolute the future of transportation and mobility. Sensors are critical to autonomous driving's security and feasibility to perceive the surrounding environment. Multi-Sensor fusion has become a current research hot spot because of its potential for multidimensional perception and integration ability. In this paper, we propose a novel feature-level multi-sensor fusion technology for end-to-end autonomous driving navigation with imitation learning. Our paper mainly focuses on fusion technologies for Lidar and RGB information. We also provide a brand-new penalty-based imitation learning method to reinforce the model's compliance with traffic rules and unify the objective of imitation learning and the metric of autonomous driving.


翻译:随着模式识别和计算机视觉技术的快速发展,诸如物体检测或语义分割等任务已经实现了比人类更好的准确性。基于这些坚实的基础,“自动驾驶”正在成为一个重要的研究方向,旨在改变未来的交通和出行 mobility。传感器对于自动驾驶的安全性和可行性来说至关重要,以感知周围环境。多传感器融合因其多维度感知和集成能力的潜力而成为当前研究的热点之一。在本文中,我们提出了一种新颖的特征级多传感器融合技术,用于端到端自主驾驶导航和模仿学习。本文主要关注激光和 RGB 信息的融合技术,我们还提供了全新的基于惩罚的模仿学习方法来强化模型对交通规则的合规性,并统一模仿学习的目标和自动驾驶的指标。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员