Extreme multi-label (XML) classification refers to the task of supervised multi-label learning that involves a large number of labels. Hence, scalability of the classifier with increasing label dimension is an important consideration. In this paper, we develop a method called LightDXML which modifies the recently developed deep learning based XML framework by using label embeddings instead of feature embedding for negative sampling and iterating cyclically through three major phases: (1) proxy training of label embeddings (2) shortlisting of labels for negative sampling and (3) final classifier training using the negative samples. Consequently, LightDXML also removes the requirement of a re-ranker module, thereby, leading to further savings on time and memory requirements. The proposed method achieves the best of both worlds: while the training time, model size and prediction times are on par or better compared to the tree-based methods, it attains much better prediction accuracy that is on par with the deep learning based methods. Moreover, the proposed approach achieves the best tail-label prediction accuracy over most state-of-the-art XML methods on some of the large datasets\footnote{accepted in IJCNN 2023, partial funding from MAPG grant and IIIT Seed grant at IIIT, Hyderabad, India. Code: \url{https://github.com/misterpawan/LightDXML}
翻译:极端多标签(XML)分类指的是涉及大量标签的监督多标签学习任务。因此,随着标签维度的增加,分类器的可伸缩性是一个重要的考虑因素。在本文中,我们开发了一种名为LightDXML的方法,它通过使用标签嵌入而不是特征嵌入进行负采样,并循环迭代三个主要阶段:(1)标签嵌入的代理训练;(2)为负采样筛选标签;(3)使用负采样进行最终分类器训练。因此,LightDXML还消除了re-ranker模块的要求,从而进一步节省时间和内存需求。所提出的方法实现了最佳状态:虽然训练时间、模型大小和预测时间与基于树的方法相当或更好,但它实现了比基于深度学习的方法更好的预测精度。此外,所提出的方法在一些大型数据集上实现了大多数最先进的XML方法中最好的尾标签预测准确度。\footnote{已被IJCNN 2023接受,部分资金来自印度海得拉巴IIIT的MAPG赠款和IIIT种子赠款。代码:\url{https://github.com/misterpawan/LightDXML}}