This paper considers canonical correlation analysis for two longitudinal variables that are possibly sampled at different time resolutions with irregular grids. We modeled trajectories of the multivariate variables using random effects and found the most correlated sets of linear combinations in the latent space. Our numerical simulations showed that the longitudinal canonical correlation analysis effectively recovers underlying correlation patterns between two high-dimensional longitudinal data sets. We applied the proposed LCCA to data from the Alzheimer's Disease Neuroimaging Initiative and identified the longitudinal profiles of morphological brain changes and amyloid cumulation.
翻译:本文考虑对两个纵向变量进行直线相关分析,这些变量可能在不同时间以不规则网格分辨率进行抽样。我们用随机效应模拟了多变变量的轨迹,发现潜空中最相关的线性组合组合组合。我们的数字模拟表明,纵向孔径相关分析有效地恢复了两个高维长纵向数据集之间的内在关联模式。我们将拟议的LCA应用到阿尔茨海默氏病神经造影倡议的数据中,并确定了形态大脑变化和氨基累积的纵向特征。