This paper presents a novel approach to simulating electronic health records (EHRs) using diffusion probabilistic models (DPMs). Specifically, we demonstrate the effectiveness of DPMs in synthesising longitudinal EHRs that capture mixed-type variables, including numeric, binary, and categorical variables. To our knowledge, this represents the first use of DPMs for this purpose. We compared our DPM-simulated datasets to previous state-of-the-art results based on generative adversarial networks (GANs) for two clinical applications: acute hypotension and human immunodeficiency virus (ART for HIV). Given the lack of similar previous studies in DPMs, a core component of our work involves exploring the advantages and caveats of employing DPMs across a wide range of aspects. In addition to assessing the realism of the synthetic datasets, we also trained reinforcement learning (RL) agents on the synthetic data to evaluate their utility for supporting the development of downstream machine learning models. Finally, we estimated that our DPM-simulated datasets are secure and posed a low patient exposure risk for public access.
翻译:本文提出了一种使用扩散概率模型(DPM)模拟电子健康记录(EHR)的新方法。具体来说,我们展示了DPM在合成纵向EHR中捕捉数字、二进制和类别变量等混合类型变量的有效性。据我们所知,这是DPM在这个目的上的第一次使用。我们将DPM合成的数据集与以往最先进的基于生成对抗网络(GAN)的结果进行了比较,应用于两种临床应用:急性低血压和人免疫缺陷病毒(HIV的艺术)治疗。鉴于DPM以前没有类似的研究,我们工作的核心组成部分涉及探讨在各个方面使用DPM的优点和注意事项。除了评估合成数据集的真实性外,我们还在合成数据上训练了强化学习(RL)代理,以评估其支持下游机器学习模型开发的效用。最后,我们估计DPM合成的数据集安全可靠,对公共访问来说患者曝光风险较低。