The geodesic edge center of a polygon is a point c inside the polygon that minimizes the maximum geodesic distance from c to any edge of the polygon, where geodesic distance is the shortest path distance inside the polygon. We give a linear-time algorithm to find a geodesic edge center of a simple polygon. This improves on the previous O(n log n) time algorithm by Lubiw and Naredla [European Symposium on Algorithms, 2021]. The algorithm builds on an algorithm to find the geodesic vertex center of a simple polygon due to Pollack, Sharir, and Rote [Discrete & Computational Geometry, 1989] and an improvement to linear time by Ahn, Barba, Bose, De Carufel, Korman, and Oh [Discrete & Computational Geometry, 2016]. The geodesic edge center can easily be found from the geodesic farthest-edge Voronoi diagram of the polygon. Finding that Voronoi diagram in linear time is an open question, although the geodesic nearest edge Voronoi diagram (the medial axis) can be found in linear time. As a first step of our geodesic edge center algorithm, we give a linear-time algorithm to find the geodesic farthest-edge Voronoi diagram restricted to the polygon boundary.
翻译:摘要:多边形的测地边界心是一个点c位于该多边形内,使得c到该多边形任意边的测地距离的最大值最小,其中测地距离是多边形内最短路径距离。本文提出了一种线性时间算法,用于找到一个简单多边形的测地边界心,该算法优于Lubiw和Naredla [European Symposium on Algorithms, 2021]的O(n log n)时间算法。该算法基于Pollack,Sharir和Rote [Discrete&Computational Geometry,1989]发现简单多边形的测地顶点中心的算法以及由Ahn,Barba,Bose,De Carufel,Korman和Oh [Discrete&Computational Geometry,2016]改进为线性时间的算法。可以轻松从多边形的测地最远边缘Voronoi图中找到测地边界心。在线性时间内找到该Voronoi图仍然是一个未解决的问题,尽管可以在线性时间内找到测地最近边缘Voronoi图(中轴线)。作为我们测地边界心算法的第一步,我们给出了一种线性时间算法,用于找到限于多边形边界的测地最远边缘Voronoi图。