Units equivariance (or units covariance) is the exact symmetry that follows from the requirement that relationships among measured quantities of physics relevance must obey self-consistent dimensional scalings. Here, we express this symmetry in terms of a (non-compact) group action, and we employ dimensional analysis and ideas from equivariant machine learning to provide a methodology for exactly units-equivariant machine learning: For any given learning task, we first construct a dimensionless version of its inputs using classic results from dimensional analysis, and then perform inference in the dimensionless space. Our approach can be used to impose units equivariance across a broad range of machine learning methods which are equivariant to rotations and other groups. We discuss the in-sample and out-of-sample prediction accuracy gains one can obtain in contexts like symbolic regression and emulation, where symmetry is important. We illustrate our approach with simple numerical examples involving dynamical systems in physics and ecology.
翻译:单位等同性( 或单位共变) 是精确的对称, 要求测量的物理适量之间的关系必须服从自相符合的维度缩放。 在这里, 我们用( 非相容的) 组动作来表达这种对称。 我们从等式机器学习中用量分析和概念来提供精确单位- 等差机器学习的方法: 对于任何特定的学习任务, 我们首先使用光学分析的经典结果来构建其输入的无维版本, 然后在无维空间中进行推论。 我们的方法可以用来在一系列广泛的机器学习方法上设置单位等同性, 这些方法对于轮转和其他组是等同的。 我们讨论在象征性回归和模拟等同性的情况下可以获取的抽样和外抽样预测准确性收益。 我们用简单的数字例子来说明我们的方法, 涉及物理和生态的动态系统。