Latent neural ordinary differential equations have been proven useful for learning non-linear dynamics of arbitrary sequences. In contrast with their mechanistic counterparts, the predictive accuracy of neural ODEs decreases over longer prediction horizons (Rubanova et al., 2019). To mitigate this issue, we propose disentangling dynamic states from time-invariant variables in a completely data-driven way, enabling robust neural ODE models that can generalize across different settings. We show that such variables can control the latent differential function and/or parameterize the mapping from latent variables to observations. By explicitly modeling the time-invariant variables, our framework enables the use of recent advances in representation learning. We demonstrate this by introducing a straightforward self-supervised objective that enhances the learning of these variables. The experiments on low-dimensional oscillating systems and video sequences reveal that our disentangled model achieves improved long-term predictions, when the training data involve sequence-specific factors of variation such as different rotational speeds, calligraphic styles, and friction constants.
翻译:事实证明,对于学习任意序列的非线性神经普通差分方程式来说,隐性神经元数是有用的。与其机械学对等方相比,神经元数的预测精确度在较长的预测视野(鲁巴诺瓦等人,2019年)中下降。为了缓解这一问题,我们提议以完全数据驱动的方式,将动态状态与时间变异变数脱钩,使强健的神经元数模型能够跨越不同的环境。我们表明,这些变量可以控制潜在的差异函数和/或将绘图从潜在变量到观测的参数。通过对时间变异变量进行明确的模拟,我们的框架使得能够利用最近的演示学习进展。我们通过引入一个直接的自我监督的目标来增强这些变量的学习。关于低维振荡系统和视频序列的实验表明,当培训数据涉及不同旋转速度、书写风格和摩擦常数等序列的变化因素时,我们分解的模型可以实现更好的长期预测。</s>