In this paper we design efficient quadrature rules for finite element discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the "mollified" solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient finite element assembly.
翻译:在本文中,我们为非本地扩散问题的有限元素分解设计了高效的二次规则,这些非本地扩散问题具有紧凑支持的内核功能。非本地建模和模拟的两个主要挑战有:令人望而生畏的计算成本和分解计划的非三维实施,特别是在三维环境下。在这项工作中,我们通过引入一个可视化的软体化功能来规避这两个挑战,该功能可以提高原群的规律性,使用适应性集成技术,并利用平行法。我们首先显示,“流动”解决方案与随着混凝土参数消失而出现的精确解决方案相融合,然后我们展示若干二维和三维测试案例的拟议方法的一致性和准确性。此外,我们展示了平行实施适应性算法的良好尺度性,并将拟议方法与最近开发的高效的有限元素组装技术进行比较。